Note

Synthesis of an aldotriouronic acid derivative related to (4-0-methylglucurono)xylans*

Ján Hirsch, Pavol Kováč, Juraj Alföldi, and Vincent Mihálov Institute of Chemistry, Slovak Academy of Sciences, 809 33 Bratislava (Czechoslovakia) (Received February 26th, 1980; accepted for publication, May 25th, 1980)

Acetylation of methyl 4-O-(2-O-benzyl- β -D-xylopyranosyl)- β -D-xylopyranoside (2) followed by catalytic debenzylation of the product 3, gave methyl 2,3-di-O-acetyl- $4-O-(3,4-di-O-acetvl-\beta-D-xylopyranosyl)-\beta-D-xylopyranoside (4)$. Reaction of the nucleophile 4 with methyl 2,3-di-O-benzyl-1-chloro-1-deoxy-4-O-methyl- α,β -Dglucopyranuronate (1) in the presence of silver perchlorate and sym-collidine afforded the 4-O-methyl-α-D-glucuronic acid-containing trisaccharide derivative 5a as the major product. The target methyl ester methyl glycoside 7a was obtained from 5a by successive catalytic deacetylation and debenzylation. The structures of 7a and its β anomer 7b were confirmed by interpreting their ¹³C-n.m.r. spectra and by analysis of mass-spectral fragmentation patterns of the corresponding permethyl ethers 8a and 8b. Criteria for distinguish between xylan-type aldotriouronic acids bearing the uronic acid at the reducing and nonreducing end of the molecule have been established by comparing mass spectra of 8a and its positional isomer 19. Treatment of 1 with its hydrolysis product gave the trehalose type, 4-O-methyl-D-glucuronic acid-containing, disaccharide derivatives 9-11, which were also isolated from products of the reaction of 1 with 4. Structures 9-11 were determined by further chemical conversions, and by ¹³C-n.m.r. and mass spectrometry.

In addition to D-xylose, xylo-oligosaccharides and a small amount of 4-O-methyl-D-glucuronic acid, graded acid hydrolysis of hardwood (4-O-methylglucurono)xylans yields a homologous series of linear aldouronic acids having 4-O-methyl- α -D-glucuronic acid linked to O-2 of a nonreducing D-xylose end-group. With the aim of studying various properties of oligosaccharides that reflect closely the structure of natural polysaccharides, we have previously prepared, by controlled syntheses, a number of methyl β -glycosides of oligosaccharides related to xylans. We now report a synthesis of the methyl ester methyl β -glycoside 7a related to (4-O-methylglucurono)-

^{*}Synthesis and Reactions of Uronic Acid Derivatives, Part XX. For Part XIX see ref. 1. For a preliminary communication on a portion of this work see ref. 2.

xylans. Synthesis of the positionally isomeric, branched derivative 18 has been described elsewhere in this Series³.

RESULTS AND DISCUSSION

The point of departure in the present synthesis was methyl 4-O-(2-O-benzyl- β -D-xylopyranosyl)- β -D-xylopyranoside⁴ (2), which was conventionally converted (by acetylation and debenzylation) into crystalline methyl tetra-O-acetyl- β -xylobioside (4), which has only HO-2' unsubstituted.

Treatment of 4 with an excess of the glycosyl halide 1 was conducted under conditions^{1.5} known to yield mainly 1,2-cis glycosides. The nucleophile 4 reacted almost completely (t.l.c.), and chromatography of the crude product gave three, non-reducing disaccharides (9-11), and an unresolved mixture of trisaccharides (5a and 5b). To identify the non-reducing disaccharides, compounds 9-11 were converted into the hydroxyl derivatives 12-14, and these were trideuteriomethylated to afford compounds 15-17, which produced qualitatively identical mass spectra. The spectra confirmed that 15-17 were isomeric methyl [(methyl 2,3-di-O-trideuteriomethyl-4-O-methylhexopyranosyluronate)-2,3-di-O-trideuteriomethyl-4-O-methylhexopyranosid uronates. The $(1\rightarrow 1)$ -linkage was indicated by peaks of intense F_1 ions at m/z 104 and weak peaks of ions of the H₁ and J₁ series (m/z 94, 78, and 81). Further ions diagnostic of the structures were reflected by peaks at m/z 459 and 424 $(\lceil M - CD_3OH \rceil^+)$ and $\lceil M - 2CD_3OH \rceil^+$, respectively) and, by analogy with ions at m/z 263, 231, 219, and 187, present⁶ in the spectrum of 2,3,4-tri-O-methyl- α -Dxylopyranosyl 2,3,4-tri-O-methyl- β -D-xylopyranoside, at m/z 333, 298, 286, and 251. Configurations of the glycosidic linkage in 9-11 and products of their further conversions were tentatively assigned on the basis of specific optical rotations observed for 12-14, and the structures were finally confirmed by analyzing their ¹³C-n.m.r. spectra (Table I). By analogy with 13 C-n.m.r. spectra 7 of α,α - and β,β -trehalose, ¹³C-n.m.r. chemical shifts observed for both pyranoid rings in the α,α - and β,β -linked non-reducing disaccharides 12 and 13 were identical and diagnostic of magnetic equivalence of the respective carbon atoms in both saccharide rings. The differences in ¹³C-chemical shifts found in the spectrum of 14, as compared with those in the spectra of 12 and 13, is indicative of a different angle between the planes of the two pyranoid rings, resulting in different shielding effects to which carbon atoms in this α , β -linked dimer are exposed.

The trisaccharide derivatives 5a and 5b were obtained in combined yield of 95.7%. They appeared as one spot several t.l.c. systems and were only partially resolved by column chromatography. The last fractions of the mixture of 5a and 5b eluted from the silica-gel column were enriched in 5b, some of which could be crystallized. The unresolved mixture of 5a and 5b was deacetylated, yielding a product whose t.l.c. showed two poorly-separated spots, of which the faster-moving one was indistinguishable from 6b obtained by deacetylation of crystalline 5b (that is, compared with the acetates 5a and 5b, the glycosides 6a and 6b showed reversed chro-

TABLE I

13C-N.M.R. SPECTRAL DATA FOR 7a, 7b and 12-14

Compound	Ring	Chemical shifts								
		C-I	C-2	C-3	C-4	C-5	C-6	MeO-I	McO-4	MeO-6
с' (он) Ст.	C	105.21	74.18	75.60	77.55	64.18	_	58.59	_	
MeO2C OH	C.	103.01	78.46	75.22	70.80	66.38		_	_	
OH 70 70	C"	99.37	72.23	73.53	\$2.62	70 SO	173.39		61.14	54.57
c' on one	C	105.34	74.18	75.73	77.94	64.31		58.59	_	
HeO ₂ C O	C,	101.71	83.27	76.25	71.08	66.12		_	_	
C- C- 75	C"	104.95	74.57	75.73	82.49	71.08	172.22	-	61.45	54.70
C, CH CWe	С	95.87	71.72	73.15	82.63	71.20	172.88		61.46	54.71
MeO 1 12 CO2Me	C'	95.87	71.72	73.15	82.63	71.20	172.88	_	61.46	54.71
C' (OH CHE CHE CHE CHE CHE CHE CHE CHE CHE CH	c	100.30	74.46	76.02	82.38	73.55	172.11		61.47	54.72
Neo CH 13 COME	C.	100.30	74.46	76.02	82.38	73.55	172.11	_	61.47	54.72
C, OH CASE	C	101.85	73.40	74.50	82 20	71.20	172.70		61.36	56 60
MeD CH 14	C.	104.33	73.80	75.60	82.20	71.20	172.10		61.36	56.60

matographic mobilities). Chromatographically purified 6a and 6b were debenzylated to afford the final compounds 7a and 7b, which were converted into the fully methylated products 8a and 8b that afforded qualitatively identical mass spectra. Molecular weights of the compounds could be calculated from adA_1 and bA_1 ion-peaks according to the equation: $M = adA_1 + bA_1 + 16 = 393 + 175 + 16 = 584$.

Characteristic of xylan-type aldouronic acids is a 4-O-methyl- α -D-glucuronic⁸ or α -D-glucuronic⁹⁻¹² acid residue linked to O-2 of D-xylose residues. To find criteria for distinguishing this type of aldotriouronic acid bearing the uronic acid units at the reducing and non-reducing end, compound 18 (ref. 3) was methylated and the mass spectrum of 19 thus obtained was compared with that of 8a. For convenience

TABLE II

MASS SPECTRA (12 eV) OF 8a AND 19

m/z	d→2a→4b (8a)		a→4b2←d (19)		m/z	$d\rightarrow 2a\rightarrow 4b$	(8a)	a→4d2←d (19)	
	$\frac{0}{6}\Sigma_{45} \times 100$	Symbol	$\frac{9/\Sigma_{15} \times 100}{}$	Symbol		$\frac{67}{6}\Sigma_{45} \times 100$	Symbol	$\frac{7}{6}\Sigma_{45} \times 100$	Symbo
521			3	badA ₂	173	45	dC ₂	36	dC ₂
479	5	badFi	52	badFi	169	123	dA_3	73	dA_{2}
453			191	abdJı	159	27		27	
447			30	badF ₂	157	33		33	
395	75	dabJı	62	dabJı	145	75		398	
393	27	adA_1	94	bdAı	143	249	bA ₂	1044	aA ₂
375			43		142	81			
361	856	adA2	151	bdA2	141	49	dC ₃		
329	17	adA:	11	bdA ₃	131	31		23	
319	73	adF_{i}			129	19		33	
305		- 1 F	54		115	115	bC₂	102	aC ₂
303	49		19		114	55		159	
287	61	adF ₂			1.111	71	bA ₃	159	aA.
263			27		101	1554	F_1	1929	F_1
249			22		99	33		87	
245	13		19		88	577	Hı	613	H_1
235	239	abJ ₁			85	229	dK₂	23	dK_2
233	577	dA_1	621	dA_1	83	328	bC ₃	14	aC:
219	37				75	518	bJi	414	bJ_1
215			17		71	103		44	
201	2570	dA_2	2391	dA_2	59	· 11		14	
189	23		54		58	17	aKı 💮	19	$aK_1 +$
183			73		57			22	
175	956	bAı	717	aA_t	45	15		. 19	
174			47						

of interpretation, the component sugars are designated $d \rightarrow 2a \rightarrow 4b$ (8a) and $a \rightarrow 4b2 \leftarrow d$ (19), where a and $b = \text{per-}O\text{-methyl-}\beta\text{-D-xylopyranose}$, and $d = \text{methyl per-}O\text{-methyl-}\alpha\text{-D-glucopyranuronate}$. Aided by the known fragmentation of fully methylated aldobiouronic acids¹³ and isomeric xylo-oligosaccharides⁶, the origin of all structurally significant ion-species formed in the fragmentation of 8a and 19 could be identified. From data in Table II it follows that the presence of a hexopyranosyluronic acid at C-2' (ring a) in fully methylated xylan-type aldotriouronic acids is characterized by the formation of adF_1 , adF_2 , and abJ_1 ions (m/z 319, 287, and 235, respectively), whereas ions $abdJ_1$ (m/z 453) are formed from compounds bearing the uronic acid residue at O-2 (ring b).

Structures 7a and 7b fully confirmed data obtained from their ¹³C-n.m.r. spectra (Table I), the interpretation of which was based on analyzed ¹³C-n.m.r. spectra of a series of isomeric xylo-oligosaccharides¹⁴, taking into account ¹³C-n.m.r. chemical shifts found in the spectra of 12–14.

EXPERIMENTAL

General methods. — Melting points were determined on a Kofler hot-stage. Optical rotations (c 1, 22°, chloroform, unless stated otherwise) were measured with a Perkin-Elmer Model 141 automatic polarimeter. Noise-decoupled, ¹³C-n.m.r. spectra for solutions in D₂O (25°, internal standard 1,4-dioxane) were recorded with a Jeol FX-60 FT-NMR spectrometer. The ¹³C chemical-shift of 1,4-dioxane vs. Me₄Si (67.96 p.p.m.) was determined separately. The spectra were measured by using a repetition time of 5.0 sec, a pulse-width of 4 μ sec (4° flip angle), a sweep width of 4000 Hz, and 8 K real data points. The average number of accumulations was 5000. Chemical shifts (Table I) are given relative to Me₄Si. Mass spectra (70 and 12 eV) were recorded at an emission of 300 μ A by using a JMS 100 D instrument. The temperature in the site of evaporation was, according to the volatility of the compounds, 180–220°, and that in the ionizing chamber was 200°.

T.l.c. was performed on Silica gel G and column chromatography on dry-packed silica gel (Merck. 9385) with A. 4:1 benzene-acetone; B, 4:1 benzene-ethyl acetate; C, 12:1 chloroform-methanol; and D, 4:1 chloroform-methanol. Detection was effected by charring with 5% sulfuric acid in ethanol.

Microanalyses were performed with a Perkin-Elmer Model 240 automatic analyzer. Solutions were dried with anhydrous sodium sulfate and concentrated at 40°/2kPa.

Chromatographically pure 8a, 8b, 15-17, and 19 were obtained by methylation of 7a, 7b, 12-14, and 18 with methyl iodide or trideuteriomethyl iodide and silver oxide in N,N-dimethylformamide.

Methyl 2,3-di-O-acetyl-4-O-(3,4-di-O-acetyl-β-D-xylopyranosyl)-β-D-xylopyranosyl-β-D-xylopyranoside (4). — Conventional acetylation of 2 (7 g) with 1:2 pyridine–acetic anhydride (66 mL) gave crystalline methyl tetra-O-acetyl-2'-O-benzyl-β-xylobioside (3, 9.2 g, 91.5%), m.p. 145–147° (from ethanol), $[\alpha]_D^{22}$ –50° (Found: C, 56.27; H, 6.26. $O_{26}H_{34}O_{13}$ calc.: C. 56.30; H, 6.18).

The foregoing compound 3 (8.9 g) in 1:1 ethanol-acetone (250 mL) was hydrogenated at room temperature over 5% palladium-on-charcoal (1 g) until the starting material disappeared (\sim 6 h), as showed by t.l.c. (solvent A). The product (R_{Γ} 0.4, compare 0.6 for the starting material) was isolated conventionally and crystallized from ethanol-isopropyl ether, m.p. 84–93°. [α]_D -77°. When dried at 30°/133 Pa, crystalline 4 (6.95 g, 93.3%) gave analytical data consistent with the substance's being a hemihydrate (Found: C, 48.23; H, 6.08. $C_{10}H_{28}O_{13} \cdot 0.5 H_2O$ calc.: C, 48.20: H, 6.17). Drying for 2 h at 110°/2kPa gave an amorphous solid, [α]_D -79°, which gave analytical data consistent with the compounds being a methyl tetra-O-acetyl-pentobioside. (Found: C, 49.18; H, 5.96. $C_{19}H_{28}O_{13}$ calc.: C, 49.13; H, 6.08). To avoid possible migration of acetyl groups during dehydration at elevated temperature, the hemihydrate was used subsequently.

Methyl 4-O-[2-O-(methyl 4-O-methyl- α - (7a) and β -D-glucopyranosyluronate)- β -D-xylopyranosyl]- β -D-xylopyranoside (7b). — A solution of chloride 1 (75 mL of 0.2m stock solution¹, 15 mmol) was added at -10° to a stirred mixture of 4 (2.4 g, 5 mmol), sym-collidine (2.5 mL, 18.7 mmol) and silver perchlorate (3.12 g, 15 mmol) in dichloromethane (25 mL). Cooling was discontinued and, after 30 min, t.l.c. (solvent B) showed that no chloride (R_F 0.9) and only traces of 4 (R_F 0.1) were present, and that products having R_F 0.35, 0.6, 0.7 and 0.8 had been formed. A small amount of hydrolysis product of 1 (R_F 0.4) was also present. The mixture was processed as described¹, and the crude product was eluted from a column of silica gel to afford, in order, 9, 10, 11, and an unresolved mixture of 5a and 5b (4.2 g, 95.7).

Compound 9, which was not obtained chromatographically pure, was debenzylated and, after purification by chromatography, the resultant, amorphous 12 showed $[\alpha]_D$ +143° (water) (Found: C, 45.18; H, 6.14. $C_{16}H_{26}O_{13}$ calc.: C, 45.06; H, 6.15).

Compound 10 had m.p. 115–116° (from ethanol), $[\alpha]_D$ +13° (Found: C, 67.32; H, 6.46. $C_{44}H_{50}O_{13}$ calc.: C, 67.16; H, 6.40).

Compound 11 had m.p. 119–120° (from methanol), $[\alpha]_D + 59.2$ ° (Found: C, 67.35; H, 6.53. $C_{44}H_{50}O_{13}$ calc.: C. 67.16; H, 6.40).

Hydrogenolysis of **10** and **11** gave compound **13**: m.p. 212–213° (from acetone). $[\alpha]_D$ –75.5° (water) (Found: C. 44.94: H, 6.30. $C_{16}H_{26}O_{13}$ calc.: C, 45.06: H. 6.15). and compound **14**: m.p. 190–191° (from methanol–acetone). $[\alpha]_D$ +59° (water) (Found: C, 45.01: H, 6.18. $C_{16}H_{26}O_{13}$ calc.: C, 45.06: H, 6.15.

From the late fractions of the eluted mixture of 5a and 5b, a portion of 5b (0.9 g) could be crystallized from methanol, m.p. $163-164^{\circ}$. $[\alpha]_D -50^{\circ}$ (Found: C, 58.53; H, 6.31, $C_{41}H_{52}O_{19}$ calc.: C, 58.01; H, 6.18).

The mother liquor remaining after crystallization of 5b was combined with the

NOTE NOTE

unresolved mixture of 5a and 5b, and the material (3.3 g) was deacetylated (Zemplén). T.l.c. (solvent C, double development) showed presence of two, poorly separated spots (6a and 6b) in $\sim 3:1$ ratio ($R_F \sim 0.25$ and 0.3) of which the faster-moving was indistinguishable from 6b obtained by deacetylation of crystalline 5b. Repeated chromatography yielded chromatographically pure, syrupy 6a (1.8 g, yield of the α -linked trisaccharide, 53.4%, based on the amount of isolated 5a + 5b) plus 6b (0.65 g, total yield of the β -linked trisaccharide, 40%). A portion of 6a, when acetylated with acetic anhydride-pyridine, gave 5a as a colorless foam, $[\alpha]_D + 5.2^\circ$ (Found: C, 57.91: H, 6.35. $C_{41}H_{52}O_{19}$ calc.: C, 58.01: H, 6.18).

Catalytic hydrogenolysis of **6a** and **6b** afforded: compound **7a**; colorless foam, $R_{\rm F}$ 0.4 (solvent D), $[\alpha]_{\rm D}$ + 19.5° (water) (Found: C, 45.70; H, 6.53. $C_{19}H_{32}O_{15}$ calc.: C, 45.60; H, 4.45); and compound **7b**: m.p. 241–242° (from methanol), $R_{\rm F}$ 0.4 (solvent D); $[\alpha]_{\rm D}$ -66° (water) (Found: C, 45.44; H, 6.50. $C_{19}H_{32}O_{15}$ calc.: C, 45.60; H. 6.45).

ACKNOWLEDGMENTS

The authors thank K. Paule for microanalyses and G. Košický for measurements of optical rotation.

REFERENCES

- 1 P. Kováč, J. Hirsch, V. Kováčik, and P. Kočiš, Carbohydr. Res., 85 (1980) 41-49.
- 2 J. HIRSCH AND P. KOVÁČ, J. Carbohydr. Nucleos. Nucleot., 5 (1978) 373-380.
- 3 P. Kováč, J. Carbohydr. Nucleos. Nucleot., 4 (1977) 165-178.
- 4 P. Kováč, J. Hirsch, and V. Kováčik, Carbohydr. Res., 75 (1979) 109-116.
- 5 H. PAULSEN AND W. STENZEL, Chem. Ber., 111 (1978) 2348-2357.
- 6 V. Kováčik, V. Mihálov, and P. Kováč, Carbohydr. Res., in press.
- 7 J. HAVERKAMP, M. J. A. DEBIE, AND J. F. G. VLIEGENTHART, Carbohydr, Res., 37 (1974) 111-125,
- 8 T. E. TIMELL, Adv. Carbohydr. Chem., 19 (1964) 247-402.
- 9 P. M. RAY AND D. A. ROTTENBERG, Biochem. J., 90 (1964) 646-655.
- 10 E. L. FALCONER AND G. A. ADAMS, Can. J. Chem., 34 (1956) 338-344.
- 11 G. A. ADAMS AND C. T. BISHOP, J. Am. Chem. Soc., 78 (1956) 2842-2844.
- 12 O. SAMUELSON AND L. WICTORIN, Sven. Papperstidn., 69 (1967) 777-782.
- 13 V. Kováčik, V. Mihálov, J. Hirsch, and P. Kováč, Biomed. Mass Spectrom., 5 (1978) 136-145.
- 14 P. Kováč. J. Hirsch, A. S. Shashkov, A. I. Usov, and S. V. Yarotsky, Carbohydr. Res., 85 (1980) 177–185.